
 Data Access Table Formats
Data pool preparation

Thu, Jul 25, 1996

Introduction
The Data Access Table is used to specify what happens within a station every cycle to

prepare the data pool. Included in this is a mechanism for executing all enabled closed loops
and server code. At the start of a periodic cycle, the Update Task is executed. As part of its
work, entries in the DAT are processed from beginning to end. Each entry is an "instruction"
to be interpreted before moving on to the next entry/instruction. The generic pattern of such
entries is as follows, shown as 8 (16-bit) words:

type# table# entry# memory ptr

other info step size count

The hi byte of the first word specifies the entry type#. The lo byte of the first word is a system
table# if it is in the range 00–1F. The meanings of all other fields depend upon the entry
type#. The above layout of these entries is only an example. Normal entry type#s are positive
integers in the range 01–7F. Entry type#s of 00 or in the range 80–FF are invalid and are
ignored during DAT processing. Entry type 7F is the condition entry.

The table# is normally either 00 (for the channel entries in the Analog Data Table) or 05 (for
the byte entries in the Binary Data Table). The entry# is the entry of the first data word
targeted. The data words are copied into successive entries of the destination table when a
count is specified. Most often, the entry# is a channel#. Some types use an address pointer
which provides a hardware board address or other memory pointer. The 7th word is often a
step size when a memory ptr is used. The count word is usually a loop count of the number
of consecutive channel readings (destination table entries) to be filled.

Condition entry
Entry type 7F is a special entry that is used to enable/disable an internal flag that

determines whether a non-7F entry is processed or skipped. At the beginning of DAT
processing, this internal flag is initialized to disabled, so that a 7F entry must occur before
any non-7F entries will be interpreted for processing. The only result of processing a 7F entry,
which by definition is never disabled, is to enable or disable the internal flag that determines
whether a subsequent non-7F entry will be processed. The format of a 7F entry is as follows:

7 F 0 0 period phase

lower bit#/chan# upper

counter

state
0=bit#, 1=chan#

At its simplest, this entry merely specifies the period word in cycles. For processing every
cycle, use 1. Such is typically the first entry in a DAT. If processing is desired every other
cycle, use period=2. The other options allow for enabling the internal flag based upon the
state of a bit, or the value of an analog channel being inside or outside a specified range. For
more information, see the document RDATA Periodicity.

Overview
As an overview of the entry types available for use as DAT instructions, here is a list by

type#:

01 Multiplexed A/D used by Linac
02 (n.u.)
03 Read memory words by bytes
04 Read binary bytes via address list
05 Shift data words
06 Adjust nonlinear RF diode readings
07 Zero-data pedestal adjustment
08 Compute ratio
09 Compute product
0A Compute sum
0B Compute difference
0C Process 1553 command list
0D Auto-setting from memory
0E Wait, post-process 1553 data
0F Average sequence of readings
10 (n.u.)
11 Analog Devices A/D board
12 Sample datapool
13 Read memory words by words
14 High Voltage Digitizer (obs)
15 Beam status counter
16 Capture data on selected cycles (obs)
17 Timer channel clock event counts (obs)
18 Timer channel clock events (obs)
19 AMD9513 timer delays (obs)

1A Read single bytes of memory
1B Read words—mask,shift,BCD options
1C Read clock events from clock board (obs)
1D Invoke local applications
1E Insert data into memory words
1F De-multiplex data words
20 Send data request to SRMs
21 Wait for SRM data reply
22 Map SRM data into data pool
23 (n.u.)
24 Compute counter differences
25 Copy setting word
26 Assemble combined status words
27 Copy memory into data stream
28 Copy from IRM A/D circular buffer
29 De-multiplex binary data bytes
2A Copy words memory-memory
2B Copy bytes memory-memory
2C Copy FIFO to memory
2D Save all readings in present cycle

Some entry types access data from various hardware interfaces. Some modify data already
collected in various ways. In particular, entry 1D allows for processing all local applications,
some of which may generate output data for inclusion in the data pool. Much of the
configuration of a station stems from the design of its data access table entries.

Editing DAT entries
Armed with the detailed specifications, one can enter DAT entries using a memory dump

page. If this is done, one should take care, as the DAT is scanned every cycle, so it is "live." As
changes made in this way are usually made one word at a time, it may be wise to disable an
entry while it is being modified, say by setting the $80 bit in the type# byte. Remove this sign
bit when the rest of the entry is ready. This form of raw editing of the DAT is not for the
squeamish.

Another means of editing the DAT is provided by a Unix tool called xxxxx. It operates by
reading up the entire DAT and producing a text file version of it, which is then edited and
downloaded all at once. See document xxxxxx.

DAT entry formats
A brief description follows for each DAT entry type, grouped into related types. In some

cases, additional details can be found in other related documents.

Data Access Table Formats p. 2

Accessing memory data

Read memory words by bytes
0 3 0 0 chan# memory ptr

— step size count

Words are copied (accessed by bytes) starting at the memory address given, advancing by the
step size for each destination table entry (chan#). If the memory ptr refers to data stored in
consecutive words, the step size would be 2.

Read memory words by words
1 3 0 0 chan# memory ptr

— step size count

Words are copied (accessed by words) starting at the memory address given, advancing by
the step size for each destination table entry (chan#). If the memory ptr refers to data stored in
consecutive words, the step size would be 2.

Read single bytes of memory and convert to reading words.
chan# memory ptr

step size—

1 A 0 0

mask shift count

For the range of selected channels, read a byte from memory, apply an optional mask, shift
an optional amount and use the resulting 16-bit word as a reading. If the mask is zero, no
masking will be applied. If the shift count is negative, a right shift of (–shift) bits is indicated,
starting from the data byte positioned in the hi byte of the word and zero in the lo byte. If the
shift count is positive, a left shift of that many bits is indicated, starting from the byte
positioned in the lo byte of the word and zero in the hi byte. The step size is used to advance
the memory ptr when more than one byte is accessed (count > 1).

Read memory words (by words) with mask, shift, BCD options

Data Access Table Formats p. 3

chan# memory ptr

step size

1 B 0 0

mask countflags shift

Copy words of memory (accessed by 16-bit read cycles) into consecutive channel readings.
Apply optional mask (0 treated as $FFFF), optional shift (positive=left, negative=right,
zero=none), and optional BCD-to-binary conversion (flags=$80 to enable conversion). The step
size advances memory ptr for count words.

De-multiplex data words
1 F 0 0 chan# memory ptr

step size count— mpxChan

De-multiplex words of memory data according to the value of the mpxChan. The value of
mpxChan, for example, may range from 0–F on successive cycles. Data from memory (count
words using step size) is copied into the readings of channels numbered from
(chan#*mpxValue) to (chan#*mpxValue + count – 1). This is useful when the hardware interface
furnishes multiplexed data according to a value supplied on digital control lines. Type 1E
may be used to place the proper value on the control lines.

Insert data into memory words
mpxChan memory ptr

step size

1 E 0 0

mask countshift

Sample masked value from mpxChan and insert into memory words. The reading of mpxChan
is masked by mask and left-shifted by shift bits (rotated as a 16-bit word, so use 16–n to shift
right) and inserted into the target memory word(s). The bits outside the mask in the target
word(s) are not modified.

Compute counter differences
2 4 0 0 chan# memory ptr

targBit# countmemory step size

Monitors memory word counter differences. This can be used to monitor whether an
associated cpu in the same VME crate is still working by watching a counter word at memory
ptr that the cpu increments regularly. Optionally, if targBit# is nonzero, a bit# can be set if the

Data Access Table Formats p. 4

difference from last time is nonzero, and cleared if the difference is zero. When count > 1,
additional memory counter addresses are obtained from using memory step size, and
successive bit#s are used when targBit# is nonzero. The memory of what the word read last
time is retained in the setting word of the associated target difference chan#, so such channels
cannot be settable.

Copy setting word
2 5 0 0 chan# —

— offset count

Copy setting (or other) field values into reading fields of successive analog channels. The
offset value is the offset to the required field in the ADATA table entry relative to the reading
field. Use offset = 2 for setting field values.

Assemble combined status words
2 6 0 0 chan#

— template# count

—

Assemble words of status from collections of bits found in the BBYTE table, using templates
found in the CSTAT table #24. Each status word is built from a template found in this table.
The reading of chan# is built from template#, and the process is repeated for successive
channels and templates according to count. The template is an entry from the CSTAT table,
each of which consists of up to 8 specifications of 4 bytes each. Each specification is a Byte#
word, followed by a shift count byte and a mask byte. See document Composite Digital
Status for more details.

Copy memory blocks into data stream

2 7 0 0 dStream# memory ptr

#bytes countmemory step size

Copy a block of memory of size #bytes from memory ptr into a data stream with index
dStream#. The beginning of the record written contains a 16-byte header with the following
format:

Yr Mo Da Hr Mn Sc Cy ms

memory ptr —

Data Access Table Formats p. 5

This header includes the time-of-day the record was written, followed by the memory
address from which the block was copied. If count > 1, then multiple blocks of memory can be
so captured, each including a header. In this case, subsequent block source memory
addresses are derived using the memory step size. The data stream should be defined in the
DSTRM table to have records whose size reflects both the header size and the data block size.
For example, if 1024-byte blocks of memory were to be captured into a data stream, the data
stream record size as defined would be $410. The time-of-day format is BCD, except for the ms
byte that holds the residual milliseconds of the present cycle. The Cy byte ranges from
$00–14, indicating the present 15Hz cycle.

Access to specific hardware interfaces

De-multiplex binary data bytes
2 9 0 B byte# memory ptr

— initMpx count

This entry assumes a simple hardware interface for multiplexing binary data bytes. The
memory ptr is the address of a multiplexed data byte; memory ptr+1 is the address of the
multiplex select byte. The initMpx is the initial value of the multiplex select byte; subsequent
values are merely incremented from that. The byte# is the initial entry used in the BADDR
table for obtaining the target addresses for the data byte read from the multiplexed data byte.
This simple multiplexing scheme may be used to bring in many digital data bytes using only
two bytes of I/O interface. (Each IRM, for example, includes an interface to eight bytes of
digital I/O. In the Fermilab Booster HLRF system, two of these bytes are used in this scheme to
bring in 16 bytes of multiplexed digital status.)

Multiplexed A/D used in Fermilab Linac
0 1 0 0 chan# memory ptr

firstChan count— delay

This entry accesses A/D data as interfaced via the original multiplexed A/D system in use at
the Fermilab Linac. The SRMs have since been used to read this data, so this entry is no longer
needed.

Read binary raw data bytes
0 4 0 5 byte# memory ptr

— — count

Data Access Table Formats p. 6

An array of byte addresses (usually the BADDR table) specified by memory ptr contains
pointers to consecutive bytes of binary status data. They are treated as memory-mapped data
bytes unless the high byte of the address found is $80, 81, or 82, which carry special
significance. [If the high byte is 80, the entry is assumed to be a pointer to a 1553 data byte in
a 1553 command block on the 1553 controller board's memory. If the high byte is 81, the next
byte is an SRM address, and the last two bytes is the control value needed to be sent to the
SRM for setting the byte. If the high byte is 82, the next three bytes specify parameters needed
for PLCQ message queue processing.] In other cases, the 4-byte entry is a memory address
that is accessed to obtain the data byte stored for the byte# given (in the BBYTE table). The
number of successive entries filled in BBYTE is given by count.

Process 1553 command list
0 C 0 0 chan# 1553 command blk ptr

— step size count

0 C 0 5 byte# 1553 command blk ptr

— step size count

The pointer is used to process a sequence of 1553 command blocks, each of which executes
one 1553 command. Each command may result in up to 32 data words transferred. The count
word in this case indicates the number of command blocks to be processed. For each word
read by a command block, a new reading is stored in consecutive channels. In the binary data
case, with the table#=5, each word read produces two consecutive bytes of binary status
readings. Separate queues are maintained of commands awaiting execution by multiple 1553
controllers. The interrupt following completion of one command passes the next command, if
any, to the controller.

Wait, post-process 1553 data
0 E 1 1 ctrlr# —

— timeout count

Wait for the 1553 interrupt activity to complete. Systems which do 1553 I/O with interrupts
allow overlapping of multiple 1553 controller activity during DAT processing. This entry
must be used to wait for all the readings which have been queued up for interrupt-driven
acquisition to finish. This post-processing of 1553 data collection also copies the data into the
readings field of the ADATA table, so that this entry must be included. The timeout word
specifies the time within the cycle (in 0.5 ms units) after which to give up awaiting all
controllers in the range specified by ctrlr# and count and continue DAT processing of any
remaining entries.

Data Access Table Formats p. 7

Analog Devices A/D board
This is the driver for a VME digitizer board from Analog Devices.

1 1 0 0 chan# memory ptr

— hdwChan# count

Here, memory ptr is the base address of the board. and hdwChan# is the initial hardware
channel select.

Send data request to SRMs
2 0 0 0 — —

#bytes —SRMnode# reqType

Smart Rack Monitors (SRMs) are used in the Fermilab Linac. As many as 5 SRMs are connected
via ARCnet to a single VME station. This entry sends out a request message for data to be
returned from an SRM. The SRMnode# is usually $7A00, specifying broadcast to all SRMs. The
reqType is $2201 in the case of requesting the SRM to read and return all its normal cycle data.
The #bytes specifies the maximum size of the return data buffer. This DAT entry does not wait
for the response from the SRMs. That function is specified using the next entry. For more
details, see the document SRM Message Protocols.

Wait for SRM data reply
2 1 0 0 — —

—SRMnode# —deadLine

Await responses from a specific SRM. The deadline word specifies the maximum time within
the current cycle to wait, in 0.5 ms units. In response to a broadcast request, the order of SRM
responses is not determined. But the system's SRM support knows which have responded
since the request was sent. It is necessary to place this DAT entry before any $22 entries that
refer to the same SRM node#. See the document SRM Message Protocols for more details.

Map SRM data into data pool

offset

2 2 0 0 chan# —

countSRMnode# table#offset

Data Access Table Formats p. 8

offset

2 2 0 5 byte# —

countSRMnode# table#offset

These entries process the already-received response data from an SRM and copy it selectively
into the data pool. The table#/offset word identifies the SRM data segment of the response
buffer that is to be mapped to the channel or byte data. See the document SRM Message
Protocols for more details.

Copy from IRM A/D circular buffer

dlyChan#

2 8 0 0 chan# register base ptr

countextScan —

The IRM analog IndustryPack board maintains a 64K-byte memory that is updated by the
hardware with 64 channels of analog input digitized and stored every millisecond. There is
room for 512 samples of such data, covering about 0.5 second of time. This entry usually
copies the most recently-digitized set of 64 readings into the data pool. If dlyChan# is
nonzero, it backs up to a time within the current cycle given by the reading of the indicated
channel. If extScan has the least bit set, it causes the A/D interface to use an external trigger
for its digitaizer scan. This option is needed for the PET project, where the scan rate is 360Hz
rather than 1000Hz. The register base ptr refers to the analog IP board's register address. It is
usually FFF58300.

Modify/compute data already acquired

Shift data words
0 5 0 0 chan# —

— shift count

Shift reading fields of a sequence of channels. If shift is negative, right shift reading word
with sign extension. If shift is positive, left shift reading word with zero fill. This has been
used to adjust 12-bit A/D readings based on a 2.5 volt scale so that they appear to come from
a 14-bit A/D with a 10 volt scale. This is a replace operation.

Adjust nonlinear RF diode readings

Data Access Table Formats p. 9

0 6 0 0 chan# memory ptr

stepSize count— shift

Certain RF amplitude and power readings encountered in the Fermilab Linac system were
measured by detector diodes and therefore have nonlinear characteristics. This entry
linearizes the readings so they can be linearly scaled in higher level programs the same as
any other analog channel readings. Channels in the indicated range from chan# to
chan#+count-1 were linearized according to one of two formulae if specified by flags in the
"conversion flags" field of the analog descriptor. Flag bit#3 specifies that linearization is to be
performed; bit#0 specifies either gradient (0) or power (1) linearization algorithm. If stepSize
is nonzero, the nonlinear data is taken from memory beginning at memory ptr rather than
from the present reading field of the target channel. The shift word specifies a shift applied to
the raw data word before linearization. See document xxxxx for more details on the
linearization algorithms used.

Zero-data pedestal adjustment
0 7 0 0 chan# —

beamBit count— noBeamState

Perform automatic pedestal subtraction for selected channels in the target range specified by
chan# and count. If beamBit is nonzero, it is an optional beam status bit whose no-beam state
is given by the sign bit (bit#15) of noBeamState.. If beamBit is zero, the default beam status Bit#
(009F) and no-beam state ($8000) will be used. Each channel to be so treated must be
indicated by the appropriate flag bit set (bit#2) in the "conversion flags" byte in the analog
descriptor. The result of this logic is that readings read exactly zero, by definition, for cycles
in which there is no beam. The pedestal value is kept in the setting word of each channel so
treated, so the channel cannot be settable. It may, however, have motor control, since motor-
controlled channels do not have setting values. In order for the beamBit status to be valid, this
entry should occur in the DAT after the type 04 entry that updates the BBYTE table with binary
status bytes.

Capture data on selected cycles
1 6 0 0 chan# —

bit# count— bitState

Scan the readings of a sequence of channels and capture the reading values for each channel
in the range that is marked to need this treatment in its analog descriptor via bit#1 of the
"conversion flags" byte. The capture is done on cycles when the status bit# matches the bit
state given (in the sign bit of bitState); otherwise, the captured reading is copied over the

Data Access Table Formats p. 10

current reading, thus preserving the reading that had been captured before. In systems with
channels whose data is valid only during some selected cycles, this entry allows preserving
only valid data readings in the local data pool. When a host computer requests data from
such channels, it will find only the most recent valid readings there. If it is necessary to also
have the current readings, another channel with a copy of the same channel's reading could
be set up normally. The captured data values are written into the 7th word of an ADATA entry.
Note that motor control cannot be used for such channels, since that same word is used as a
motor countdown word in that case.

Save all readings in present cycle
2 D 0 0 chan# —

— bit# count

For the range of selected channels specified by chan# and count, capture the present reading
fields into the 8th word of the ADATA entries. The bit# word specifies in the lo 15 bits the
status bit# that determines whether this capture operation is performed. The state is
indicated in the ms bit of this same word. After capture, a host may want to retrieve these
values using the listype# defined for accessing the 8th word of an ADATA entry—before the
next occurrence of the same status bit state.

Sample data facility
1 2 0 0

— offset

Ptr to SAMPL table—

— —

From parameters stored in the SAMPL table, copy a set of channel readings from the local
station to memory (especially on the Vertical Interconnect). A table is built containing pairs of
words, each of which has a channel# word followed by the data value word. Additional
details on this are found in the document Sample Data Facility for VME Stations. This was
used by D0 in the "early days."

Compute ratio
0 8 0 0 chan# —

numerator denominator— threshold

Compute ratio between two analog channel readings, where numerator and denominator are
channel#s, and theshold is the value of the denominator channel such that, if the absolute
value of the denominator reading is below it, the result chan# reading will be zero; otherwise
the result will be numerator/denominator expressed in volts; i.e., if the readings are equal,

Data Access Table Formats p. 11

the result will be one volt, or $0CCC. The standard full scale range is 10 volts. If an overflow
results, use +/– full scale, as appropriate.

Compute product
0 9 0 0 chan#

chan1 chan2— shift

offset1 offset2

Compute product of two channels chan1 and chan2, and scale by shift. The complete formula
used is:

(chan1.reading–offset1)*(chan2.reading–offset2)*2^shift
Note that the values of the two offsets are constants, not channel#s.

Compute sum
0 A 0 0 chan# —

— chan1 chan2

Compute sum of two channels chan1 + chan2. Divide result by 2 in order to prevent overflow.
As an example, if the full scales of two readings were both 100.0 amps, then to derive a chan#
reading that is the sum of the two, the full scale of the result channel should be 200.0 amps.

Compute difference
0 B 0 0 chan# —

— chan1 chan2

Compute difference of two channels chan1 – chan2. Divide result by 2 in order to prevent
overflow. As an example, if the full scales of two readings were both 100.0 amps, then to
derive a chan# reading that is the difference of the two, the full scale of the result channel
should be 200.0 amps.

Average sequence of channels
0 F 0 0 chan# —

— firstChan count

Average the sequence of channel readings from firstChan to firstChan+count–1 and place the

Data Access Table Formats p. 12

result in the reading field ofchan#.

Beam status counter
1 5 0 0 chan# —

firstBit# count— states

Produce counter readings in target channels by sampling bit# states of sequential status
bit#s. The first bit state, to be compared with the firstBit# status, is in the sign bit of the states
word. Successive status bit#s are compared to successively lower-numbered bits in the states
word. This naturally limits count to 16. When a status bit matches the indicated state, the
counter is cleared; when it differs, the counter is incremented. One use of this would be to
build a channel whose reading is a counter that measures the #cycles since the last beam
cycle. This feature is described further in the document Monitoring Counters.

Copy words memory–memory
2 A 0 0 chan# source memory ptr

step size countdestination memory ptr

Copy count memory words from source memory ptr to destination memory ptr. The step size is
used to advance the source memory ptr. If the source words are consecutive, then step size = 2.

Copy bytes memory–memory
2 B 0 0 chan# source memory ptr

step size countdestination memory ptr

Copy count memory bytes from source memory ptr to destination memory ptr. The step size is
used to advance the source memory ptr. If the source bytes are consecutive, then step size = 1.

Copy FIFO to memory
2 C 0 0 chan# first FIFO address

step size countelapsedTime #words

Copy FIFOs contents into memory. The count word specifies how many FIFOs to read out. The
#words specifies how many words to read out from each FIFO. The step size is used to advance

Data Access Table Formats p. 13

to th next FIFO address. The destination address is found from the analog control field of each
chan# in sequence. Such channels may be called waveform channels. (This method was used
for the first version of the swift digitizer IP module. A later version added memory to the
board so that readout of the FIFOs by the CPU was no longer necessary.)

Miscellaneous

Auto-setting from memory

chan#

0 D ltype# bit# memory ptr

countnode# step size

Memory words are copied as setting data, where the channels to be set are consecutive
starting at chan# in node#. This is a way to turn memory data words into readings in another
station, although it can, of course, also reference channels in the local station by using the
local node#. If the bit# (with state value in the sign bit) is nonzero, it conditions the setting
action upon the state of the indicated status bit.

Invoke local applications
1 D 0 0 — —

maxDelta —initTime deltaTime

Scan all entries of LATBL (local application table) in sequence. For each entry that is enabled,
call the named local application, including the appropriate value for the call type: initialize,
terminate, or cycle. In this way, every enabled local application is invoked every cycle, giving
it a chance to perform whatever it needs to do on that cycle. Every LA instance must specify
an enable Bit# as the first parameter in its LATBL entry. When the bit is set, the instance is
enabled. The three time word indicated above are diagnostics, all in 0.5 ms units. The initTime
word is the time of starting this DAT entry within the current cycle. The deltaTime word is the
total cpu time used by all the enabled LA's this cycle. The maxDelta word is the maximum
value of deltaTime ever. Since this DAT entry executes closed loops, it is usually one of the last
entries in the DAT, so that it has access to the latest values in the data pool.

Data Access Table Formats p. 14

